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Abstract The purpose of this paper is to present a regulator for control of the continuous-sedimentation process
in a clarifier–thickener unit when this is modelled in one space dimension and when the settling properties of the
solids obey Kynch’s assumption. The model is a scalar hyperbolic conservation law with space-discontinuous flux
function and point source. The most desired type of solution contains a large discontinuity. A common objective is
to control the movement of this discontinuity subject to the requirement that the effluent of the process have zero
concentration of particles. In addition, there may be a requirement that the underflow concentration of the thickened
suspension lie above a predefined value. Based on previous results on the nonlinear behaviour of the process, a
nonlinear regulator is presented. It controls the location of the large discontinuity indirectly by controlling the total
mass. The process is stabilized significantly and large input oscillations can be handled.

Keywords Clarifier–thickener · Continuous sedimentation · Control · Dynamic behaviour · Nonlinear regulator

1 Introduction

The aim of the process of continuous sedimentation is to separate particles from a liquid in a large tank under a
continuous inflow of mixture at an intermediate feed level. The particles settle by gravity and are also influenced by
a bulk flow upwards above the feed inlet (the clarification zone), and a bulk flow downwards below the feed inlet (the
thickening zone), see Fig. 1 (left). Under optimal operating conditions, there is a discharge of a highly concentrated
suspension at the bottom (the underflow) simultaneously with a clarified overflow of liquid at the top of the tank (the
effluent). The continuous-sedimentation tank is widely used in mineral processing, wastewater-treatment plants,
chemical engineering etc., and is called clarifier–thickener unit, or settler. Under optimal operating conditions there
are no particles in the clarification zone and a large discontinuity in the thickening zone, called the sludge blanket
in wastewater treatment. This state of the settler is called optimal operation.

The process has been used for about a century and is well known to be nonlinear, which is why its behaviour is
difficult to predict as well as to model. The need to control the process for obtaining a clarified effluent is obvious.
In a wastewater-treatment plant most of the concentrated underflow, which is biological sludge, is recycled within
the plant to a biological reactor that precedes the settler. Therefore, it is also vital to be able to control the underflow
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concentration. In such an activated sludge system the settler also serves as a buffer of biological sludge. These
aspects can be fulfilled by controlling the sludge-blanket level.

Independently of the application, the process is highly nonlinear even under the most common idealized
assumptions, which are the following. The clarifier–thickener unit is ideal in the sense that all flows in the tank occur
only in one dimension, the feed inlet is a point source, the cross-sectional area is constant and the concentration
is constant on each cross-section. Furthermore, the particles are assumed to be equally sized spheres that form a
non-compressible sediment at a maximum concentration.

In the series of papers [1–4] thorough investigations have provided a deeper knowledge as well as classifications
of the nonlinear behaviour of an idealized one-dimensional clarifier–thickener model. The hyperbolic PDE-model
was formulated and analyzed in [5,6], in which existence and uniqueness locally in time were proved. Global
existence and uniqueness were established by Bürger et al. [7,8] and Karlsen and Towers [9]. The PDE-model is
hyperbolic because of the constitutive assumption by Kynch [10]: the settling flux of particles is a function only of
the concentration. We refer to the series [1–4] for justifications, discussions and references regarding the present
model as well as the parallel ‘engineering’ development without PDEs. We mention only the recent important
contributions by Bürger et al. [11,12], which rely on the analyses by Karlsen et al. [13,14]. They formulate and
analyze a more general PDE model which includes compression at high concentrations.

Analyses, based on PDE solutions, of the possibilities of controlling the sludge blanket (large discontinuity) can
be found in [15–21]. In all these references it is assumed that the variation of the feed input is so moderate that a
quasi steady-state situation remains with a sludge blanket. The limitations for control are analyzed by the author
in [4]. An interesting simplified, lumped-parameter model was presented in a short but comprehensive paper by
Stehfest [15] in 1984. In contrast to several other published models (not referred to here), the arguments behind
Stehfest’s model, in particular considering the boundary conditions, agree with the theory of conservation laws
with space-discontinuous flux functions that was developed during the 1990s ([5,6,22,23]). The step responses
presented in [15] agree with those in Sect. 3.2 in the present paper. Chancelier et al. [19,20] use a feedback law to
control the sludge blanket. However, it requires that the sludge-blanket level is measured, which may be difficult.
In the present paper we show how the sludge blanket can be controlled without measuring its location.

The need to control the settler is also emphasized, directly or indirectly, in the applications; see e.g. [24–46].
For step inputs, optimal-control strategies were presented in [3] in order to meet the different control objectives

suggested. Those control objectives are exhaustive in the sense that they can always be met, also for theoretically
possible but maybe unrealistically high values of the feed variables. In [4], it was shown how the process could
be controlled, however, not automatically. There is a need for a refined control strategy for fine-tuning the sludge-
blanket level. This is taken care of in the present paper.

In Sect. 2, the process, the model and the previous results are reviewed briefly. The main condition of the previously
presented control objectives — to maintain optimal operation as long as possible—is now refined to include control
of the sludge blanket, possibly with a constraint on the underflow concentration; see Sect. 3.1. Section 3 contains
justifications and reasons behind the control strategy, which can be found in Sect. 3.4. The strategy means that
the sludge-blanket level is controlled indirectly by controlling the mass in the settler. The strategy is realized by
a proportional regulator in Sect. 4, which works for moderately varying indata. For indata with large oscillations,
the proportional regulator has to saturate according to the limitations of the control variable presented in [4]. The
complete nonlinear regulator can be found in Sect. 5, which concludes with several simulations illustrating some
properties of the regulator.

2 Preliminaries

We review only briefly the fundamental notation and results presented in the papers [1–4]. These concepts are
sufficient for understanding the ideas, results and simulations of the paper. For the details of construction of the
solutions shown in Sect. 3.2, we refer to [2, Sect. 2]. For the numerical simulations we use the data and batch-settling
flux function given in the caption of Fig. 1 and the numerical method in [47].
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Fig. 1 Left: Schematic picture of an ideal one-dimensional clarifier–thickener unit, where u stands for concentration and Q for volume
flow of the feed, effluent and underflow streams, respectively. The flow restrictions are Qf = Qe + Qu > 0 and Qe ≥ 0. For the
numerical simulations we use H = 1 m, D = 4 m, and A = π302 m2 ≈ 2,827 m2 for the constant cross-sectional area. Right: Flux curves
f (u) in the thickening zone and characteristic concentrations. The bulk velocities are defined as qe = Qe/A etc. The constant uinfl is the
inflection point of fb(u) and f (u) = fb(u)+quu. For q̄u < qu < ¯̄qu there is a local minimum point uM of f (u) that lies between uinfl and
umax. Given uM, um is the lower concentration defined by f (um) = f (uM). For qu < ¯̄qu there is a local maximum point, uM (< uinfl)
of f (u). The batch-settling flux used for demonstrations with numerical simulations is fb(u) = 10u

(
(1 − 0.64u/umax)

6.55 − 0.366.55
)

[
kg/(m2h)

]

2.1 The clarifier–thickener unit and the model

The one-dimensional model of the clarifier–thickener unit, or settler, was first presented in [6]. Figure 1 shows
the settler and the flux function in the thickening zone for three different values of the control parameter Qu. The
purposes of the settler may vary depending on in what industrial process it is involved. At least in wastewater
treatment the main purposes of the settler are the following. It should

1. produce a low effluent concentration;
2. produce a high underflow concentration;
3. work as a buffer of mass and be insensitive to small variations in the feed variables.

The one-dimensional model of the settler is the following. The conservation law can be written as the partial
differential equation

ut + (
F(u, x, t)

)
x

= s(t)δ(x), (1)

where δ is the Dirac measure, the total flux function is

F(u, x, t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−qe(t)u, x < −H,

g
(
u,Qe(t)

) = fb(u) − qe(t)u, −H < x < 0,

f
(
u,Qu(t)

) = fb(u) + qu(t)u, 0 < x < D,

qu(t)u, x > D,

and the source function is

s(t) = Qf(t)

A
uf(t) = Qu(t) + Qe(t)

A
uf(t) = (

qu(t) + qe(t)
)
uf(t).

For convenience, the dependences of the flux functions within the settler on the (time varying) volume flows are
only written out when it is needed, i.e., f (u) = f

(
u,Qu(t)

)
. The physical input variables are the feed concentration

uf and the feed volume flow Qf . For graphical interpretations in operating charts it is, however, convenient to use
the feed point (uf , s) as input variable. The control variable of the process is Qu and has the natural restriction
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0 < Qu ≤ Qf . Two particular values of this variable arise from the properties of the batch settling flux function.
Define

q̄u = −f ′
b(umax), Q̄u = q̄uA,

¯̄qu = −f ′
b(uinfl), ¯̄Qu = ¯̄quA,

which are the bulk velocities such that the slope of f is zero at umax and uinfl, respectively, see Fig. 1 (right).

2.2 Operating charts and optimal operation

Figure 2 shows the ‘steady-state chart’ and the ‘control chart’. Depending on the location of the feed point (uf , s)

in the steady-state chart, there are different possible steady-state solutions, which are all piecewise constant and
non-decreasing with depth; see [1, Table 1] for a complete table. The limiting flux is defined as:

flim(u) = min
u≤α≤umax

f (α) =
{

f (u), u ∈ [0, um] ∪ [uM, umax],
f (uM), u ∈ (um, uM);

see Fig. 2 (left). This flux, as well as the characteristic concentrations and the regions of the steady-state chart,
depend on the control variable Qu; e.g. uM(Qu), f (u,Qu) and flim(uf ,Qu). The following regions in the operating
chart are independent of Qu:

�i =
⋃

Qu>0

�i(Qu), i = 1, . . . , 4,

P = P1 ∪ P2, where P1 =
⋃

0<Qu≤ ¯̄Qu

p(Qu), P2 =
⋃

Qu> ¯̄Qu

p(Qu),

�3a = �3 ∩ {
(u, y) : y < fb(uinfl) + ¯̄quuinfl

}
and �3b = �3 \ �3a;

see Fig. 2 (right). Given a feed point in this chart, there is a unique graph flim(·, Q̃u) that passes through the feed
point, see [1, Theorem 2]. With this unique value Q̃u on the control parameter, the settler is critically loaded in
steady state, which means that any higher load (mass per time unit) fed to the settler will result in an overflow of
particles.

A more important concept than critically loaded is optimal operation. These concepts are related but not identical.
Optimal operation in steady state means that the concentration is zero in the clarification zone and there is a
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Fig. 2 Left: The steady-state chart. The thick graph is the limiting flux curve. If the feed point lies on this curve, the settler is critically
loaded in steady state, which means that it works at its maximum capacity. Below this graph the settler is underloaded, and above it is
overloaded with a non-zero effluent concentration. Each region corresponds to a specific steady state which is unique, except on the
limiting flux curve (and on �3 and �5), where the location of a discontinuity in the thickening and/or the clarification zone is not uniquely
determined. Note that the regions in this chart all depend on Qu. Right: The control chart with respect to steady states; �3 = �3a ∪�3b,
�4 = �3 ∪ �′. The regions in this chart are fixed (given the batch settling flux fb)
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A regulator for continuous sedimentation 269

discontinuity in the thickening zone between the concentrations um and uM; see Fig. 1 (right). In wastewater
treatment, this discontinuity is called the sludge blanket and its location at the depth x = xsb ∈ (0,D) is called
the sludge-blanket level (SBL). A rising SBL refers to reality, although the x-coordinate decreases, because of the
downward-pointing x-axis. A necessary condition for this state is that (uf , s) ∈ p(Qu) ∪ �2(Qu) ∪ �3(Qu) and

Qu < ¯̄Qu, which implies (uf , s) ∈ P1 ∪ �2 ∪ �3a; see Fig. 2.
For a general dynamic solution, optimal operation and the SBL are defined as follows. Let ucl denote the restriction

of the solution u to the clarification zone.

Definition 2.1 The settler is said to be in optimal operation at time t if Qu(t) < ¯̄Qu and the solution of (1) satisfies:

• ucl(x, t) = 0 ⇔ u(x, t) = 0, −H < x < 0,
• there exists a level xsb(t) ∈ (0,D) such that

u(x, t) ∈
{

[0, uinfl), 0 < x < xsb(t)

[uinfl, umax], xsb(t) < x < D.

The definition implies a natural definition of the SBL for a settler in optimal operation: it is the discontinuity
at the depth x = xsb(t) in the thickening zone, such that the jump in the concentration passes the characteristic
concentration uinfl. It is convenient to use this definition of the SBL also when there are particles in the clarification
zone.

In the analyses of step responses and control of these, it turned out that similar lines to the graph of the limiting
flux were convenient to introduce. With the same notation as in the previous papers, we define (and skip L2 since
we do not need it here):

L1 =
3⋃

i=1

�i ∪ p ∪
{
(u, y) : y = quu,

f (uM)

qu
< u ≤ umax

}
,

L3 = {
(u, y) : y = f3(u)

}
where f3(u) =

⎧
⎪⎪⎨

⎪⎪⎩

f (u), 0 ≤ u ≤ uM

f (uM), uM < u ≤ f (uM)
qu

quu,
f (uM)

qu
< u ≤ umax.

Note that these sets depend on Qu; see Fig. 3. By the control strategy DCL1 (direct control with respect to L1)
we mean that Qu(t) is defined such that

(
uf(t), s(t)

) ∈ L1
(
Qu(t)

)
(analogously for L3). Since the value of Qu is

uniquely determined by the feed point (uf , s), it is convenient to use the notation Qu = L−1
1 (uf , s) ⇔ (uf , s) ∈

L1(Qu).
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Fig. 3 The set S = S1 ∪ S2 (the ‘safe’ region) is the closed region below L3, shaded in the figure. D (the ‘dangerous’ region) is its
complement, i.e. it lies strictly above L3. (Note that the feed point has to lie on or above the line y = quu, since s = Qfuf/A ≥
Quuf/A = quuf .)
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270 S. Diehl

To satisfy the three purposes of the settler mentioned above, some control objectives for the process were
introduced in [3, Table 1]. The main condition of these is to maintain optimal operation as long as possible. From
the analyses of step responses in [2] and dynamic solutions in [4], it turned out to be convenient to introduce the
following sets of the operating chart:

S = {
(u, y) : quu < y ≤ f3(u)

}
,

D = {
(u, y) : 0 ≤ u ≤ umax, y > f3(u)

}
,

S1 = S ∩
{
(u, y) : y ≤ f (uinfl)

}
,

S2 = S \ S1;
see Fig. 3. For step responses from optimal operation in steady state, the state of optimal operation is left immediately
if and only if (uf , s) ∈ D. For a general solution, the situation is slightly different. A sufficient condition for
maintaining optimal operation, at least for a while, is (uf , s) ∈ S1.

2.3 The control variable’s influence on the underflow concentration

Since one of the purposes of the settler is that the underflow concentration should be high, a natural constraint as a
part of a control objective is that uu(t) is bounded from below. This can be described in terms of the control variable
a priori; see the following theorem (the proof can be found in [3]) and Fig. 4.

Theorem 2.1 Assume that the settler is in optimal operation for 0 ≤ t ≤ T .

• The underflow concentration satisfies uu(t) ∈ ( ¯̄uu, umax
]

for 0 ≤ t ≤ T , where ¯̄uu = f (uinfl, ¯̄Qu)/ ¯̄qu.
• Let umin

u ∈ ( ¯̄uu, umax) be a given desired lower bound on the underflow concentration. Assume that Qu(t) ≤
Qmax1

u , where Qmax1
u is defined uniquely by

f
(
uM(Qmax1

u ),Qmax1
u

) = Qmax1
u

A
umin

u .

Then uu(t) ≥ umin
u for 0 ≤ t ≤ T and Qmax1

u > Q̄u.

Fig. 4 Left: The characteristic concentrations of Theorem 2.1 can be obtained graphically in the operating chart for control of steady

states in the following way. ¯̄uu = 7.13 kg/m3 and ¯̄Qu =5,159 m3/h satisfy f (uinfl, ¯̄Qu) = ¯̄qu ¯̄uu. Given umin
u ∈ ( ¯̄uu, umax) determine

the corresponding y-value on the boundary of �3 and �′. This flux value is equal to Qmax1
u umin

u /A. Right: The graph of Qmax1
u as a

function of umin
u

123



A regulator for continuous sedimentation 271

3 Control objectives and strategies

3.1 Control objectives

From the results in [4] we know the limitations of the control variable Qu(t) for maintaining optimal operation in
the sense that overflow is prevented and, if a control objective requires it, the underflow concentration is kept above
a prescribed level. However, to maintain optimal operation during a long time, it was also illustrated that there
is a need to fine-tune the average SBL so that it stays within the thickening zone. The control objective ‘optimal
operation is maintained as long as possible’, possibly subject to a lower bound umin

u on the underflow concentration,
needs therefore to be refined.

Given a fixed reference value xr
sb of the SBL and a lower bound umin

u , we introduce the following control objectives
with respect to the SBL:

COSBL1: Optimal operation is maintained and xsb(t) is close to xr
sb.

COSBL2: Firstly, uu(t) ≥ umin
u holds, secondly, optimal operation is maintained and xsb(t) is close to xr

sb.

The phrase ‘close to’ could mean, for example, that xsb(t) lies in an interval around xr
sb. A further natural requirement

is that |xsb(t) − xr
sb| should tend to zero if the feed point is constant after a certain time point. Another requirement

during periodically varying input data could be that the integrated absolute deviation during a period should be kept
small. Then the control variable can be piecewise constant, which could be another constraint.

In order to formulate a control strategy for either of the two control objectives above, the control variable’s
influence on the SBL as well as the underflow concentration should be known. The latter relation was presented in
Sect. 2.3. The former relation is considered in the next section.

3.2 Disturbances from optimal operation

For all transient solutions presented in [2,3], it can be concluded that the following property holds: When the
settler is in optimal operation, the concentrations above and below the SBL are usually approximately um and uM,
respectively. This means that a control strategy that succeeds in meeting COSBL1 or 2, yields a dynamic solution
that is approximately a stationary optimal-operation solution. Therefore, to elaborate such a control strategy, it is of
vital importance to have information of the responses of the process to disturbances when the settler is in optimal
operation in steady state.

The relation between Qu(t) and xsb(t) is difficult to obtain generally. In fact, there is no unique relation, since the
actual concentration distribution in the settler plays a role. From [1] we know that, given that the triple (uf , s,Qu)

implies a steady-state solution in optimal operation, the solution is unique except for the location of the SBL, which
can be anywhere in the thickening zone. Hence, the only relation in such a case is that xsb is constant as long as Qu

is (and the feed point is constant). However, given the location of xsb we can establish the response to a change in
Qu.

Assume that the settler is in optimal operation in steady state. Then the feed point (uf0, s0) lies on the horizontal
straight part of L1(Qu0); see Fig. 3. We investigate four disturbances of this state such that the feed point ends up
above or below the horizontal line. We are only interested in small disturbances such that optimal operation is not
left directly.

3.2.1 A feed-point step such that (uf , s) lies below L1(Qu0)

After a step change in the feed point to (uf , s) ∈ U1(Qu0), which means that s < s0, the SBL is constant for a while
and then declines. The mass decreases (linearly). This was shown in [2, Sect. 4: case U1].
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3.2.2 A control-variable step-up such that (uf0, s0) lies below L1(Qu)

As the control parameter jumps up to Qu > Qu0 such that (uf0, s0) ∈ U1(Qu) holds, the solution in the thickening
zone is qualitatively as the one constructed in Fig. 5. A simulation is shown in Fig. 6. We can conclude that the SBL
declines, i.e., xsb(t) increases. The incoming mass per time unit, Qf0uf0 = As0 = Qu0uu0, is unchanged. Despite
the fact that uu1 < uu0, the outgoing mass per time unit, Quuu1 is greater than Qu0uu0, since the mass decreases.
The latter follows from the fact that for each x ∈ (0,D) the concentration is non-increasing with time.

3.2.3 A feed-point step such that (uf , s) lies above L1(Qu0)

From the step responses in [2, Sect. 4: cases O2a, O3a, �4a, U2a], in which s > s0, it can be concluded that the SBL
is constant for a while and then rises. The mass increases (linearly).

3.2.4 A control-variable step-down such that (uf0, s0) lies above L1(Qu)

As the control parameter jumps down to Qu < Qu0 such that (uf0, s0) belongs to the region between the lines L1

and L3 in Fig. 3. The solution in the thickening zone is qualitatively as the one constructed in Fig. 7. A simulation
is shown in Fig. 8. We can conclude that the SBL rises, i.e., xsb(t) decreases. The incoming mass per time unit,
Qf0uf0 = As0 = Qu0uu0, is unchanged. Despite the fact that uu1 > uu0, the outgoing mass per time unit, Quuu1

is less than Qu0uu0, since the mass increases. This follows from the fact that for each x ∈ (0,D) the concentration
is non-decreasing with time.

3.2.5 A fundamental property

All four cases above with small step-disturbances of a solution in optimal operation show the following fundamental
property, which is well known among all operators of clarifier thickeners (e.g. [48]):

Qu(t) decreases or s(t) increases 	⇒ m(t) increases and the SBL rises,

Qu(t) increases or s(t) decreases 	⇒ m(t) decreases and the SBL declines.

A control strategy must take this fundamental property into account. We can note from the four cases that the
influence on the mass is direct, whereas there may be a time delay before the SBL changes.

Furthermore, the SBL may be difficult to measure in a plant, particularly during transients. Since the concentra-
tions and flows of the input and output streams can be measured, the total mass in the settler can be calculated. Our

Fig. 5 The case when (uf0, s0) lies below L1(Qu) after a step-up of the control variable. The flux functions (left) are f0(u) = f (u,Qu0)

and f (u) = f (u,Qu). The solution (right) consists of three different concentrations in the thickening zone, separated by discontinuities.
Thin lines are characteristics
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Fig. 6 A simulation in the case when (uf0, s0) = (3, 11.5) lies below L1(Qu) after a step-up from Qu0 = 3,500 to Qu = 4,298. The
underflow concentration steps down from uu0 = 7.96 to uu(t) = 6.89 for 0 < t < 4

Fig. 7 The case when (uf0, s0) lies above L1(Qu) after a step-down in the control variable. Flux functions (left) and the solution (right).
The bottom concentration is uM for t > 0. The SBL rises, first with a constant speed, then with an increasing speed (as the SBL is a
contact discontinuity), and then with a constant speed

control strategy will be to control the total mass by using a regulator. To ensure that such a regulator satisfies the
control objectives, we need a relation between the mass and the SBL.

3.3 The steady-state relation between the mass, the SBL and the control variable

For optimal operation in steady state the following relation holds between the mass, the SBL and the control variable:

mss(xsb,Qu) = A
(
xsbum(Qu) + (D − xsb)uM(Qu)

)

= A
(
DuM(Qu) − xsb

(
uM(Qu) − um(Qu)

))
, (2)
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Fig. 8 A simulation in the case when (uf0, s0) = (3, 11.5) lies above L1(Qu) after a step-down from Qu0 = 3,500 to Qu = 2,907. The
underflow concentration steps up from uu0 = 7.96 to uu(t) = 9.69 for t > 0

Fig. 9 Left: The relation between the mass in the settler (normalized by A), the SBL and the control variable when the settler is in
optimal operation in steady state. This function depends on the batch settling flux fb. Recall that D = 4 m. Right: The relation as
xsb = D/2 = 2 m

where Qu = L−1
1 (uf , s). A three-dimensional graph of this function is shown in Fig. 9. Note that, for fixed Qu, m

depends affinely on xsb. From [1] we know that, given that the triple (uf , s,Qu) implies a steady-state solution in
optimal operation, it is unique except for the location of the SBL, which can be anywhere in the thickening zone.
This implies that there is no relation between Qu and xsb in (2).

Another interesting point regarding the control problem is the following. For fixed xsb, the mass is a weighted
average of the two concentrations um and uM. Especially, as the SBL is located in the middle of the thickening
zone, xsb = D/2, the weights are equal and

mss (D/2,Qu) = AD
um(Qu) + uM(Qu)

2
.
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A regulator for continuous sedimentation 275

Since um(Qu) ↗ uinfl and uM(Qu) ↘ uinfl as Qu ↗ ¯̄Qu, mss(D/2,Qu) is approximately constant for the given
batch flux function; see Fig. 9 (right).

During dynamic operation (2) does not hold. However, mss
(
xsb(t),Qu(t)

)
seems to be a fairly good approxi-

mation of the mass m(t), because of the above-mentioned property that a controlled settler in optimal operation is
approximately in optimal operation in steady state.

3.4 A control strategy

From [3, Table 2] we can conclude that a necessary condition for keeping optimal operation after a step input is
that (uf , s) ∈ P1 ∪ �2 ∪ �3a; see Fig. 2. If, in addition, the SBL is not too close to the bottom (inequality (9) in
[3] holds), optimal operation can be maintained. Furthermore, if the SBL meets the bottom, it was shown that the
SBL can be restored within the thickening zone again after a finite time.

Accordingly, a necessary condition for maintaining optimal operation during long time of dynamic operation is
that
(
uf(t), s(t)

) ∈ P1 ∪ �2 ∪ �3a. (3)

Assuming this holds, we define the reference value of the control parameter either as

Qr
u(t) = L−1

1

(
uf(t), s(t)

) ⇐⇒ s(t) = f
(
uM

(
Qr

u(t)
)
,Qr

u(t)
)

(4)

or

Qr
u(t) = L−1

1

(
uav

f (t), sav(t)
)
, where uav

f (t) = ∫ t+T

t
uf(τ ) dτ, (5)

(analogously for sav) for some positive number T , preferably the period in the case of a periodic input. Guided by
(2) we then define the reference mass:

mr(t) = mss
(
xr

sb,Q
r
u(t)

)
. (6)

Because of the two relationships (2) and (6) the absolute difference |xsb(t) − xr
sb| is small if and only if∣∣mss

(
xsb(t),Q

r
u(t)

) − mr(t)
∣∣ is small. Combining this with the above-described property that m(t) is approxi-

mated by mss
(
xsb(t),Q

r
u(t)

)
in optimal operation, we conclude that a control strategy should keep |m(t) − mr(t)|

small. The fundamental property of Sect. 3.2 yields the first part of the following control strategy: define Qu(t)

such that

• Qu(t) − Qr
u(t) = h

(
m(t) − mr(t)

)
for some increasing function h with h(0) = 0.

• optimal operation is maintained, and, for COSBL2, the underflow concentration is bounded below.

The first item is achieved by a proportional regulator, see the next section. The second item is achieved by adding
saturating bounds, which are obtained from the results in [4] and presented below in Sect. 5.

4 A proportional regulator

4.1 The regulator

In this section, the first item of the control strategy laid out above is implemented in terms of a proportional regulator.
Assume that optimal operation holds for t > 0.

Given the initial mass m0 in the settler at t = 0, the mass at time t is given by

m(t) = m0 +
∫ t

0

(
Qf(t)uf(t) − Qu(t)uu(t)

)
dt, t > 0, (7)
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which is equivalent to
⎧
⎨

⎩

dm

dt
= As(t) − Qu(t)uu(t), t > 0,

m(0) = m0.

(8)

Note that m(t) is continuous and piecewise differentiable, since s, Qu and uu are piecewise C1. For a constant
K > 0 we introduce the proportional regulator

Qu(t) = Qr
u(t) + K

(
m(t) − mr(t)

)
. (9)

Substitution of (9) in (8) yields the linear, time-varying equation
⎧
⎨

⎩

dm

dt
+ Kuu(t)

(
m(t) − mr(t)

) = As(t) − Qr
u(t)uu(t), t > 0,

m(0) = m0.

This can be integrated to

m(t) = m0e
−KUu(t) +

∫ t

0

(
Kuu(τ )mr(τ ) + As(τ) − Qr

u(τ )uu(τ )
)

e−K
(
Uu(t)−Uu(τ )

)
dτ, t > 0, (10)

where

Uu(t) =
∫ t

0
uu(τ ) dτ.

Since optimal operation is assumed to hold, Theorem 2.1 implies ¯̄uu < uu(t) ≤ umax, and we have the bounds

0 < ¯̄uut < Uu(t) ≤ umaxt for t > 0. (11)

Hence, the first term on the right-hand side of (10) tends to zero exponentially as t → ∞.
Assume now that the feed point remains constant after a certain time as well as the reference value Qr

u, which
may or may not be chosen according to (4). Then the reference mass mr, defined by (6), is also constant. With the
constant ur

u ≡ As/Qr
u, the expression (10) can be reduced to

m(t) = mr + (m0 − mr)e−KUu(t) + Qr
u

∫ t

0

(
ur

u − uu(τ )
)
e−K

(
Uu(t)−Uu(τ )

)
dτ. (12)

The second term on the right-hand side tends to zero exponentially by (11). Assuming that the solution converges
to a stationary solution in optimal operation then the last term in (12) tends to a constant, which is zero in the
case Qr

u is defined by (4), as t → ∞. This can be proved in the following way. For given (uf , s) the value of
the control parameter for a corresponding solution in optimal operation is unique; see [1, Theorem 2]: Qu(∞) ≡
limt→∞ Qu(t) = L−1

1 (uf , s). Hence, (9) implies that

m(∞) = mr + 1

K

(
Qu(∞) − Qr

u

)
. (13)

Furthermore, for the stationary solution in the limit, (2) yields

m(∞) = A
(
DuM

(
Qu(∞)

) − xsb(∞)
(
uM

(
Qu(∞)

) − um
(
Qu(∞)

)))
(14)

from which xsb(∞) can be calculated. Combined with (13) we get

xsb(∞) = DuM
(
Qu(∞)

) − 1
A

m(∞)

uM
(
Qu(∞)

) − um
(
Qu(∞)

) = DuM
(
Qu(∞)

) − 1
A

(
mr + 1

K

(
Qu(∞) − Qr

u

))

uM
(
Qu(∞)

) − um
(
Qu(∞)

) . (15)

If, and only if, Eq.(4) is used to define the reference value Qr
u = L−1

1 (uf , s) = Qu(∞), Eq. (13) implies m(∞) = mr

and (14) becomes

mr = A
(
DuM(Qr

u) − xsb(∞)
(
uM(Qr

u) − um(Qr
u)

))
.

This affine relationship between mr and xsb(∞), together with the corresponding one (6) between mr and xr
sb, yields

xsb(∞) = xr
sb. We sum up the results.
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Theorem 4.1 Given xr
sb ∈ (0,D), arbitrary initial data and a constant feed point (uf , s) for t > 0. Assume that

the regulator (9), with a given constant Qr
u, connected with (1) implies that the solution is in optimal operation and

converges to a stationary solution as t → ∞. Then the limit SBL is given by (15), with Qu(∞) = L−1
1 (uf , s). In

particular, if Qr
u = L−1

1 (uf , s), then xsb(t) → xr
sb as t → ∞.

Remark 1 The rate of convergence to zero of the second term of (12) is exponential. In the case Qr
u = L−1

1 (uf , s)

it follows from the theorem and (12) that uu(t) → ur
u as t → ∞. The rate of convergence of this limit process

is difficult to establish since it depends on the solution within the settler, which in turn depends on the control
parameter value from the regulator (9). Hence, the rate of convergence of the third term of (12) is difficult to obtain,
and therefore likewise for the limit process xsb(t) → xr

sb.

Remark 2 Independently of K , Qu(t) → L−1
1 (uf , s) as t → ∞. Note that (13) implies that m(∞) → mr as

K → ∞ independently of whether Qr
u is chosen equal to L−1

1 (uf , s) = Qu(∞) or not. If Qr
u �= Qu(∞), then

xsb(∞) � xr
sb holds generally as K → ∞, which can be inferred from (15) and (6):

xsb(∞) → DuM
(
Qu(∞)

) − 1
A

mr

uM
(
Qu(∞)

) − um
(
Qu(∞)

) , K → ∞,

xr
sb = DuM(Qr

u) − 1
A

mr

uM(Qr
u) − um(Qr

u)
.

4.2 Some properties of the proportional regulator

We demonstrate the statements of Theorem 4.1 by considering a numerical example. Initially, optimal operation
holds with the SBL in the middle of the thickening zone; xsb0 = D/2 = 2 m. The feed point is (uf0, s0) =(
3 kg/m3, 9.86 kg/(m2h)

)
and Qu0 = 3,500 m3/h. At t = 0 there is a step change to (uf , s) = (3, 11.5) ∈

O(Qu0) ∩ �2. Without any change in the control variable, there will be a rising SBL and an overloaded settler
after a finite time; see Fig. 10. When DCL1 is used to define the new constant value Qu =4,298 for t > 0, the
response (without a regulator) is shown in [3, Figs. 17–18]. Optimal operation is maintained, but the new SBL
satisfies xsb(∞) > xsb0.

Connecting the regulator (9) with K = 1 m3/(kg h), xr
sb = 2 m and Qr

u = L−1
1 (3, 11.5) =4,298, the original

SBL is restored, see the simulation result in Fig. 11.
A higher value of K gives a more rapid convergence of Qu(t) and m(t). However, there is a transient solution

in which the SBL may not converge much faster. We demonstrate this by setting K = 10 in Fig. 12.
Even if Qr

u is not defined according to (4) the regulator may be of major importance to maintain optimal operation,
cf. Theorem 4.1. Assume that the regulator (9) is connected with the constant value Qr

u = Qu0 = 3,500. Then Qu(t)

is continuous, and hence also uu(t). The simulation with K = 1 in Fig. 13 shows a similar behaviour as in Fig. 11
with the difference that the mass now converges to a slightly higher value. According to Theorem 4.1, Qu(t) →
L−1

1 (3,11.5) = 4,298 as t → ∞. Formulae (13) and (15) yield m(∞) = 44.7 tonnes and xsb(∞) = 1.87 m,
respectively. Note that these two values depend on the regulator gain K . If K is set to a larger or smaller value
instead, the regulator implies different limit values of the mass and the SBL; see Figs. 14 and 15.

Because of the feed-point jump to (3, 11.5) ∈ D(Qu0), and the fact that Qu(t) is continuous, the settler is actually
overloaded for small t > 0 with some particles in the clarification zone. With the resolution of the simulations,
this can only be hinted in the contour graph in Fig. 15, where the small K means a sluggish Qu(t). The condition
(3, 11.5) ∈ D(

Qu(t)
)

holds during the time when Qu(t) < L−1
3 (3, 11.5)= 3,876, which is less than an hour in

Fig. 15.
Compare the simulation in Fig. 14 with the second remark after Theorem 4.1. The simulation shows that the

high value K = 10 implies m(∞) ≈ mr in accordance with m(∞) → mr as K → ∞. The simulation also shows
that xsb(t) converges to a value close to xr

sb, despite the theoretical condition xsb(∞) �= xr
sb as K → ∞. Note that

K → 0 corresponds to disconnecting the regulator and the settler will overflow.
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Fig. 10 A simulation of a step response resulting in an overloaded settler when no regulator is connected (Qu(t) = Qu0 = 3,500 m3/h)
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Fig. 11 A numerical simulation during 12 h of a step change to (uf , s) = (3, 11.5) ∈ O(Qu0)∩�2 when the regulator (9) is connected
with K = 1, xr

sb = 2 m and Qr
u = L−1

1 (3, 11.5) = 4,298 m3/h. The constant reference mass mr(t) = 43.5 tonnes, given by (6), is
shown by the dashed line. The regulator restores the initial SBL, and the mass and control variable converge to its reference values

5 A nonlinear regulator

5.1 The regulator

To ensure that optimal operation is maintained, Qu(t) has to be partly less than ¯̄Qu (by definition of optimal
operation), partly not too small to avoid particles in the clarification zone. In other words, the proportional regulator
(9) may saturate. Therefore, we introduce the following nonlinear regulator to satisfy the control objective COSBL1
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Fig. 12 A simulation using the same data as in Fig. 11 but with K = 10 instead. Qu(t) and m(t) converge faster, but not xsb(t)
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Fig. 13 A simulation using the same data as in Fig. 11 (K = 1), but with Qr
u = Qu0 = 3,500 instead. The regulator implies that

m(t) → 44.7 tonnes and xsb(t) → 1.87 m as t → ∞
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Fig. 14 A simulation using the same data as in Fig. 13, but with K = 10 instead. The regulator implies that m(t) → 43.97 tonnes and
xsb(t) → 1.95 m as t → ∞
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Fig. 15 A simulation using the same data as in Fig. 13, but with K = 0.1 instead. The regulator implies that m(t) → 51.9 tonnes and
xsb(t) → 1.08 m as t → ∞

Fig. 16 The closed-loop
system of the
clarification-thickening
process with the regulator,
feed forward and feedback
loops (6)

(7)

(4) or (5)

proportional
regulator (9)

nonlinear regulator (16)

sat. bounds

(17)–(19)

continuous-
sedimentation
process (1)

or COSBL2; see Fig. 16. We assume that the feed point satisfies (3) and that the mass is calculated continuously
by (7).

Firstly, define Qr
u(t) by either (4) or (5). Secondly, for a given xr

sb, set the reference mass mr(t) according to (6).
Thirdly, define

Qu(t) = min
(
Qmax

u , max
(
Qmin

u (t),Qr
u(t) + K

(
m(t) − mr(t)

)))
, (16)

where Qmax
u and Qmin

u (t) are saturation bounds, which are defined as follows and commented upon below. Firstly,
set

Qmax
u =

{ ¯̄Qu, COSBL1,

Qmax1
u , COSBL2.

(17)

Secondly, let Qmin
u (t) satisfy either

Qmin1
u ≤ Qmin

u (t) ≤ Qmax
u and

(
uf(t), s(t)

) ∈ S1
(
Qmin

u (t)
)

(theoretically safe) (18)

or

Qmin
u (t) = min

(
Qmax

u , max
(
Qmin1

u , L−1
3

(
uf(t), s(t)

)))
(less restrictive) (19)
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where Qmin1
u is a small positive number.

Considering COSBL1, Qmax
u should not exceed ¯̄Qu by the definition of optimal operation.1 For COSBL2 we set

Qmax
u = Qmax1

u < ¯̄Qu in accordance with Theorem 2.1 to meet the constraint uu(t) ≥ umin
u . In a plant there may be

other reasons for defining a lower upper bound, for example, a limited pump capacity.
The reasons for the two alternative definitions, (18) and (19), of the lower bound Qmin

u (t) are given in [4]. The
theoretically safe (18) implies that optimal operation is not left. There are other less restrictive conditions for this,
but these require more information, for example, the actual concentration distribution in the thickening zone. Hence,
Qmin

u should be set to the smallest possible value satisfying (uf , s) ∈ S1(Q
min
u ). In many cases Qmin

u can be chosen
such that (uf , s) lies on the horizontal boundary between S1 and S2, which means that s(t) = f

(
uinfl,Qmin

u (t)
)
;

see Fig. 3. If the value of s is so low that (uf , s) ∈ S1(Qu = 0), then we set Qmin
u to a small positive value Qmin1

u .
Recall that we have assumed that Qu(t) > 0, since uu(t) is undefined as Qu(t) = 0. In a plant there may be other
reasons for choosing Qmin

u not too close to zero.
A high value on s implies a high value on Qmin

u , which may imply a fast declining SBL and a low underflow
concentration (cf. Theorem 2.1). Then the less restrictive condition that (uf , s) ∈ S may be advantageous. This yields
namely the lower value Qmin

u (t) = L−1
3

(
uf(t), s(t)

)
(if this is positive; otherwise set Qmin

u (t) = Qmin1
u > 0). The

drawback is that there is an exceptional case, in which there are some particles in the lower part of the clarification
zone during a limited time period. This is believed to occur only rarely and the advantage of this lower value of
Qmin

u is believed to be more important in applications. Therefore, we prefer (19) in the examples below.
Since either of the two minimum bounds described above may be greater than Qmax1

u defined in Theorem 2.1
to satisfy COSBL2, the requirement Qmin

u (t) ≤ Qmax
u is included in both (18) and (19). Hence, (16) implies that

Qmin
u (t) ≤ Qu(t) ≤ Qmax

u holds.

5.1.1 Example

Assume that the initial data and step input are the same as in the example in Sect. 4.2, except for the location of
the SBL, which is now close to the bottom. A simulation with the regulator (16) is shown in Fig. 17. During the
first 9 h the mass is less than its reference value and the control variable takes its lowest possible value Qu(t) =
Qmin

u = 3,876 m3/h. Any lower value of Qu(t) would imply particles in the clarification zone. The advantage of
controlling the mass (instead of controlling the SBL directly) is here illustrated clearly. After 9 h the control variable
converges quickly to its final value Qr

u = L−1
1 (3, 11.5) = 4,298 m3/h. During further 3 h the SBL rises and then

reaches its reference level.

5.2 Some properties of the nonlinear regulator

By numerical simulations we shall illustrate some properties of the regulator (16) given the periodic indata in
[4, Examples 1 and 2]; see Figs. 18 and 19. In particular, the influence of the saturating bounds is demonstrated.
Let xr

sb = 2 m and Qmin
u (t) be defined by (19), with Qmin1

u = 1 m3/h, in the following cases:

A. Qr
u(t) is defined by (4), K = 1, and Qmax

u = ¯̄Qu to satisfy COSBL1,

B. Qr
u(t) is defined by (5) with T = 4, K = 1, and Qmax

u = ¯̄Qu to satisfy COSBL1,

C. Qr
u(t) is defined by (5) with T = 4, K = 0.1 and Qmax

u = ¯̄Qu to satisfy COSBL1,
D. Qr

u(t) is defined by (4), K = 1 and Qmax
u = Qmax1

u to satisfy COSBL2.

1 In Definition 2.1 (optimal operation), we have required Qu(t) < ¯̄Qu instead of Qu(t) ≤ ¯̄Qu, cf. (17). The difference is subtle and
of no practical importance. The only reason for the definition is that there exists no steady-state solution with a discontinuity in the

thickening zone as Qu ≥ ¯̄Qu; see [1]. During dynamic operation with a varying Qu(t), the solution may satisfy all other requirements

of Definition 2.1 despite Qu(t) ≥ ¯̄Qu during a bounded time period.
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Fig. 17 A 15-h-simulation using the same initial data and step input as in Fig. 11, except for the initial SBL; xsb0 = 3.7 m. At t = 0
there is a step change from (uf0, s0) = (3, 9.86) to (uf , s) = (3, 11.5) ∈ O(Qu0) ∩ �2. The regulator (16) is connected with K = 1,

xr
sb = 2, Qr

u = L−1
1 (3, 11.5) = 4,298, Qmax

u = ¯̄Qu = 5,159 and Qmin
u = L−1

3 (3, 11.5) = 3,876. The two latter values are shown by
dashed lines. The reference mass mr(t) = 43.5 is shown by the dashed line. COSBL1 is satisfied and the SBL is adjusted to the desired
level after 12 h

5.2.1 Example 1, case A

In Fig. 20, a simulation shows how the regulator influences the periodic input in order to satisfy COSBL1. Right
after each jump in the feed point, Qu(t) makes a large jump and stays, during a short time, at the saturation value
Qmin

u (t) = Qmin1
u = 1 at t = 0, 4, 8, . . ., and Qmax

u at t = 2, 6, 10, . . .. These large jumps are caused by the jumps
in the reference value Qr

u(t) by (4). Note that a jump in Qr
u(t) also implies a jump in mr(t); see (6).

5.2.2 Example 1, case B

When defining Qr
u(t) by (5) with the time average taken over a period (T = 4 h), it will be constant and equal to the

initial value Qu0. This corresponds to the initial feed point, which is the mean value of the periodic input; see Fig. 18
(upper left). Thus, Qr

u = Qu0 = L−1
1 (2.5, 7.5)= 2,488 and mr(t) = 45.6. Then Qu(t) depends continuously on

time unless it has to jump because of the saturating bounds. This is demonstrated in Fig. 21, where small jumps in
Qu(t) can be seen at t = 2, 6, 10, . . . . At each of these time points the high value of the feed flux s implies a jump
from Qu(2−)= 1,688 (when Qmin

u (2−) = 1) up to Qu(2) = Qmin
u (2)= 1,860. The amplitudes of Qu(t), m(t),
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Fig. 18 Upper left: Operating chart as Qu = Qu0 = 2,488 m3/h. Located on the dashed feed line y = Qf
A

u are the feed points of
Example 1, the crosses, and Example 2, circles. The filled dot is the initial feed point (uf0, s0) = (2.5, 7.5). Upper right and lower
row: Example 1. A numerical simulation (without a regulator) when the feed concentration is piecewise constant and periodic with the
alternating values 1.8 and 3.2 kg/m3. Qf (t) = 8,482 m3/h, Qu(t) = Qu0 = L−1

1 (uf0, s0) = 2,488 m3/h, uu(t) = uu0 = 8.52 kg/m3

and ue(t) = 0
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Fig. 19 Example 2. A simulation (without a regulator) where the alternating values of the periodic feed concentration are 1 and 4 kg/m3.
This larger amplitude than in Example 1 implies overflow and a slightly declining SBL and mass, on an average. Qf (t) = 8,482,
(uf0, s0) = (2.5, 7.5), Qu(t) = Qu0 = L−1

1 (uf0, s0) = 2,488 and uu(t) = uu0 = 8.52

uu(t) and xsb(t) are now smaller than in Fig. 20. Note that the constant Qr
u implies the following phenomenon.

Since the jump down from s0 = 7.5 to s(t) = 5.4 (for 0 < t < 2) implies that m(t) < mr, the regulator decreases
Qu(t) from Qu0 = 2,488. After a short while it converges to L−1

1 (1.8, 5.4)= 1,688, which is precisely the value that
corresponds to a steady-state solution in optimal operation (with equal mass flux in and out); cf. Theorem 4.1. The
analogous behaviour occurs during the periods when the feed flux takes the high value s(t) = 9.6 (2 < t < 4, etc.).
Then Qu(t) increases and converges to L−1

1 (3.2, 9.6)= 3,382. In accordance with (13), the mass also converges to
a constant value, different from mr(t), after each jump.
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Fig. 20 Example 1, case A. A simulation using the same initial data and alternating feed concentration as in Fig. 18. The regulator (16)

is applied with K = 1, Qmax
u = ¯̄Qu = 5,159, and the alternating values of Qr

u(t) are L−1
1 (1.8, 5.4) = 1,688 and L−1

1 (3.2, 9.6) = 3,382,
respectively. The alternating values of Qmin

u (t) are Qmin1
u = 1 and L−1

3 (3.2, 9.6) = 1,860, respectively, see the dashed lines. COSBL1
is satisfied
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Fig. 21 Example 1, case B. A simulation using the same initial data and alternating feed concentration as in Fig. 20. The regulator (16)
is applied with K = 1 and the constant value Qr

u = Qu0 = 2,488. The alternating values of Qmin
u (t) are Qmin1

u = 1 and 1,860, see the
dashed lines. COSBL1 is satisfied

5.2.3 Example 1, case C

A more sluggish behaviour of Qu(t) can be obtained by decreasing the regulator gain K; see Fig. 22. In comparison
to Fig. 21 (where K = 1), the value K = 0.1 implies that Qu(t) and uu(t) are continuous and show a more sluggish
behaviour at the cost of increased amplitudes in m(t) and xsb(t).

5.2.4 Example 1, case D

Consider now the control objective COSBL2. The initial underflow concentration is uu0 = 8.52 and belongs to the
optimal-operation steady-state solution for (uf0, s0), which is the mean value of the periodically varying feed point.
Setting umin

u = 8.5 would thus be a hard constraint to fulfil. This corresponds to the rather low maximal bound
Qmax1

u = 2,528; cf. Fig. 4. Nevertheless, the simulation in Fig. 23 shows that COSBL2 is satisfied.
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Fig. 22 Example 1, case C A simulation using the same conditions as in Fig. 21, but with K = 0.1 instead. COSBL1 is satisfied
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Fig. 23 Example 1, case D. A simulation using the same conditions as in Fig. 20, but with the additional requirement uu(t) ≥ umin
u = 8.5,

which is implied by Qu(t) ≤ Qmax1
u = 2,528. COSBL2 is satisfied

5.2.5 Example 2, case A

Despite the large jumps in the periodic input (see the circles in Fig. 18) the regulator can handle the situation when
K = 1; see Fig. 24.

5.2.6 Example 2, case B–C

Setting Qr
u(t) = Qu0 = 2,488, which is the value corresponding to a steady-state solution in optimal operation for

the mean value of the two input feed points, we get the solution shown in Fig. 25 for K = 1 and Fig. 26 for K = 0.1.

5.2.7 Example 2, case D

Suppose that COSBL2 is required with umin
u = 8.5 as in Example 1D. The constraint Qu(t) ≤ Qmax1

u = 2,528
implies that there will be particles in the clarification zone during the high load intervals, since the minimum
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Fig. 24 Example 2, case A. A simulation using the same initial data and alternating uf (t) as in Fig. 19. The regulator (16) is applied
with K = 1 and the alternating values of Qmin

u (t) are Qmin1
u = 1 and L−1

3 (4, 12) = 4,335. Both these two latter values are assumed

by the regulator, as well as the upper bound Qmax
u (t) = ¯̄Qu = 5,159. Although the regulator saturates about half the time COSBL1 is

satisfied
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Fig. 25 Example 2, case B. A simulation using the same conditions as in Fig. 24, but with the constant mean value Qr
u(t) = Qu0 = 2,488

instead. During the whole intervals of high load (2 < t < 4, 6 < t < 8, etc.) the regulator saturates to Qu(t) = Qmin
u (t) =

L−1
3 (4, 12) = 4,335. During the other intervals, however, convergence to Qu(t) = L−1

1 (1, 3) = 875 occurs. Although the average mass
over a period decreases initially, longer simulation times show that it converges to a constant value and that COSBL1 is satisfied

bound L−1
3 (4, 12)= 4,335 > Qmax1

u . A simulation is shown in Fig. 27. There will be an overflow with effluent
concentrations similar to Fig. 19, where Qu(t)= 2,488 (for t > 0), which is close to Qmax1

u = 2,528. In Fig. 19,
there is no regulator connected and the underflow concentration is constant uu(t) = 8.52. However, the mass
decreases and the SBL reaches the bottom. The major improvement with the regulator connected is that the SBL is
maintained within the thickening zone, which can be confirmed by longer simulation times.
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Fig. 26 Example 2, case C. A simulation using the same conditions as in Fig. 25, but with K = 0.1 instead. The behaviour of Qu(t)

is now more sluggish and the average mass decreases initially; however, simulation longer (see the graphs in the third row) reveals that
it converges to a value such that the SBL touches the bottom, although the average SBL lies within the thickening zone
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Fig. 27 Example 2, case D. A simulation using the same conditions as in Fig. 24, but with the additional requirement uu(t) ≥ umin
u = 8.5,

which is implied by Qu(t) ≤ Qmax1
u = 2,528. This requirement means that the interval of the saturating bound is reduced to the single

value 2,528 during the intervals of high load. The settler overflows periodically at the end of these intervals
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6 Concluding discussions

The main result in this paper is the nonlinear regulator (16); see the closed-loop system in Fig. 16. It consists of a
proportional regulator and saturating bounds. The underlying ideas and results originate from the preceding series
of papers [1–4].

The control objectives we have focused on are to maintain optimal operation and keep the SBL at a prescribed
level, with and without a constraint on the underflow concentration, see Sect. 3.1.

A necessary condition for maintaining optimal operation for longer times of dynamic operation is that the feed
point satisfies (3):

(
uf(t), s(t)

) ∈ P1 ∪ �2 ∪ �3a. We have in [4] motivated why it is reasonable to assume this. If
it is not satisfied, the feed concentration is either too high, or the settler is underdimensioned. Then Qu has to be

increased sufficiently (above ¯̄Qu) to prevent overflow; see [3], where the control of step responses cover all cases.
The responses of the process to small disturbances from optimal operation can be found in Sect. 3.2. They

constitute a fundamental property of the process, which is well known among all operators of clarifier thickeners:
an increase in the control variable will result in a decrease in mass and a declining SBL, and vice versa. Note that
this conclusion cannot be drawn from the explicit formula (8), since uu(t) increases as Qu(t) decreases, and vice
versa. This property, together with the steady-state relation between the mass, the SBL and the control variable in
Sect. 3.3, yields the first part of a control strategy; see Sect. 3.4. This part is realized by means of the proportional
regulator (9), which controls the mass in the settler. The key idea is the following. Under dynamic conditions when
the settler is in optimal operation, the solution is approximately like one in optimal operation in steady state. For
the latter solution there is a known relation (2) between the mass, the SBL and the control variable. Hence, by
controlling the settler such that optimal operation is maintained, the SBL can be controlled indirectly via the mass.
The mass in the settler can be computed since we assume that the inlet and outlet concentrations and volume flows
can be measured. In this way, the SBL can be controlled without measuring it. Furthermore, controlling the mass
may be more advantageous, since the SBL may vary during a transient despite the mass is constant.

A favourable property of the relationship (2) between the mass, SBL and control variable is the following. For a
constant control variable, Eq. (2) is an affine relationship between the mass and the SBL. When the reference value
of the SBL is chosen to be in the middle of the thickening zone, the mass is almost constant as a function of the
control variable; see Fig. 9.

All numerical simulations performed by the author and found in the literature converge to steady-state solutions
when the feed inputs and the control variable are held constant. The same seems to be true when the regulator (9)
is connected and we conjecture that this is true.

Without the regulator, the way of controlling the process is by adjusting Qu(t) manually; see [3,4]. With the
regulator (9), only the reference value xr

sb needs to be set. The reference value Qr
u(t) can be defined automatically

by (4) or (5), and its value is not that crucial, since the process is much more stable. Situations when step responses
would cause either overflow of particles or an underloaded settler with a low underflow concentration, are avoided
by connecting the regulator. For a constant feed point, and no regulator connected, optimal operation is inevitably
left after a finite time when Qu �= L−1

1 (uf , s) (see [2]). A steady-state solution in optimal operation is unstable in
this sense with the present hyperbolic model.

When the regulator is connected, Theorem 4.1 yields that a stationary solution in optimal operation becomes
stable in the following sense. For a constant reference value, Qr

u = L−1
1 (uf0, s0), and a step to (uf , s), optimal

operation is maintained for a whole range of values of L−1
1 (uf , s) of the control parameter. The location of the limit

SBL is given by the explicit formula (15), which is generally different from the reference value xr
sb. As Qr

u is set
to the value L−1

1 (uf , s) (see (4)), the SBL converges to the desired xr
sb. These properties are demonstrated by the

simulations in Sect. 4.2.
In the examples in Sect. 4.2, the influence of the regulator gain K > 0 is also demonstrated. When (4) is used

to define Qr
u(t), the transient behaviour is not very sensitive to K , unless it is not too small (K = 0 means that the

regulator is disconnected). A too high value of K implies, however, problems since Qu in (9) is then substantially
different from Qr

u, even for small differences m − mr. If the latter difference also changes sign, there is a problem
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of a rapidly fluctuating Qu, which may be undesirable. When Qr
u(t) is defined by (5), the value of K influences the

transient behaviour more as well as the limit SBL (given by (15)) in case the feed point is constant after a certain
time point.

Consider the saturating bounds of the nonlinear regulator (16). The upper saturation bound Qmax1
u in (17) is

defined in Theorem 2.1 and implies that the underflow concentration is bounded from below, which is a constraint
of a control objective in Sect. 3.1. Depending on the actual application there may be other upper bounds to take into
account, for example a limited pump capacity.

One obvious lower bound is that Qu(t) cannot be negative, hence the constant Qmin1
u in (18) and (19). The

reason for the lower bound Qmin
u (t), defined by (18) or (19), is to avoid that optimal operation is left; see [4]. For

feed concentrations which are not too high (above uM), this is equivalent to avoiding an upflow of particles in the
clarification zone. We recommend condition (19), since it implies a wider range for the regulator to work within.
The drawback is that in an exceptional case, which is believed to occur only rarely, there may be some particles in
the lower part of the clarification zone during a limited time period. In the simulations, we have used (19) without
any problems.

The simulation in Fig. 17 illustrates the advantage of controlling the mass instead of controlling the SBL directly.
After 9 h in that simulation, the mass in the settler has reached its reference value and the control variable converges
quickly to its final value. During 3 h more, the SBL rises and then reaches its reference level. Hence, once the mass
has reached its reference value, the transient solution in the thickening zone will automatically yield the desired
SBL.

The performance of the nonlinear regulator (16) is further illustrated by several numerical simulations in Sect. 5.2.
In particular, the influence of the saturation bounds is investigated. These are shown by dashed lines in the graphs of
Qu(t). Note that these bounds depend on time via the movement of the feed point. The two different choices of the
reference value of Qr

u(t), defined by (4) and (5), as well as different values of the regulator gain K , are investigated.
For the moderate amplitude of the periodic feed point in Example 1 (Fig. 18), the control objective COSBL1

is satisfied in all cases investigated; see Figs. 20–22. The amplitudes of Qu(t), the mass and the SBL are reduced
when Qr

u(t) is set to the constant value corresponding to the mean value of the varying feed point (Fig. 21). This
may be of importance for the applications, and reducing the variation could be another requirement in a control
objective. If, in addition, the regulator gain K is reduced, the amplitude of Qu(t) is reduced further, but not the
mass and the SBL (Fig. 22).

For the larger amplitudes of the periodic feed point in Example 2 (Fig. 19), the regulator saturates much more;
see Figs. 24–26. COSBL1 is satisfied if the regulator gain K is not too small. Although a low value of K means that
the SBL touches the bottom periodically in the example in Fig. 26, the mean mass and SBL are stabilized, which
is difficult to accomplish without a regulator; see the results of the manual control strategies in [4, Figs. 9–10].

The behaviour of the regulator, when there is a lower bound on the underflow concentration in control objective
COSBL2, is illustrated by simulations in Figs. 23 and 27. In the former simulation, the control objective is fulfilled
despite saturation most of the time. In the latter simulation, the interval of allowable Qu(t) during the high-load
intervals is reduced to a single value, because of the hard constraint. This implies that overflow of particles is
inevitable. Still, the SBL stays within the thickening zone, in contrast to the case without a regulator; see Fig. 19.
Another property of these two simulations is that the average mass and SBL are higher than their respective average
reference values. The reason is that the mass equals the reference mass at the end of the intervals of low load, and
the proportional regulator reduces Qu(t). To overcome this problem, an integrator can be added.

Simulations (not shown here) show that an integrator will also improve the other shown cases in which the
average mass is different from its reference value. This occurs as Qr

u(t) is defined by (5). An advantage then is to
avoid or reduce the number of calculations of Qr

u(t), since this variable is defined implicitly. On the other hand,
another parameter, the integrator time, has to be adjusted and preferably anti-windup introduced.

All in all, the presented regulator is not very sensitive to the choices of the reference value Qr
u(t) and the regulator

gain K . In any case, the behaviour of the process is stabilized significantly.
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